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SUMMARY

The effectiveness and usefulness of further enhancing the shock resolution of a second-order accurate
scheme for open-channel flows by using an adaptive grid is investigated. The flux-difference-splitting
(FDS) scheme based on the Lax–Wendroff numerical flux is implemented on a fixed as well as on a
self-adjusting grid for this purpose. The grid-adjusting procedure, developed by Harten and Hyman,
adjusts the grid by averaging the local characteristic velocities with respect to the signal amplitude in such
a way that a shock always lies on a mesh point. This enables a scheme capable of perfectly resolving a
stationary shock to capture a shock that moves from mesh point to mesh point. The Roe’s approximate
Jacobian is used for conservation and consistency, while theoretically sound treatment for satisfying
entropy inequality conditions ensures physically realistic solutions. Details about inclusion of source
terms, often left out of analyses for the homogeneous part of governing equations, are also explained.
The numerical results for some exacting problems are compared with analytical as well as experimental
results for examining improvements in resolution of discontinuities by the adaptive grid. Copyright
© 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Due to limitations of numerical concepts as well as computer capability, the early numerical
methods for solving shallow water equations were simple, and in most cases a term by term
translation of partial differential equations (PDEs) to finite difference equations [1]. It was
soon realized that the numerical techniques must incorporate physical flow features and most
importantly the directional property of signal propagation for greater accuracy and applicabil-
ity [2,3]. However, these schemes failed to maintain conservative properties, which are
particularly important in the case of discontinuous flows. Significant improvement in accuracy
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has been reported by making the non-conservative Beam and Warming scheme fully conserva-
tive [4]. Recently, advances made in the field of gas dynamics in obtaining high resolution of
discontinuous flows have shifted the focus of research from classical schemes to more
sophisticated high-resolution, shock-capturing schemes for solving flow problems with strong
discontinuities [5–7]. These schemes apply upwind differencing to a linearized Riemann
problem. The higher-order versions of these schemes obtain oscillation-free results by employ-
ing flux or slope limiters.

Discontinuities present in a flow problem often pose serious difficulties for numerical
treatment. The discontinuities may be due to the operation of control structures, such as sluice
gates, a sudden change in channel geometry, such as bed slope, or a failure of hydraulic
structures, such as a dam. Shock fitting and shock capturing have been the two most common
approaches for resolving a shock while computing discontinuous flows. The shock-fitting
approach isolates a bore and computes its propagation for one time step independently of the
computation in the two adjacent continuous regions [8,9]. This approach, however, implies a
prior knowledge of the occurrence of a shock. At the same time a shock must be tracked so
that the Rankin–Hugoniot condition can be applied at the location of the shock. The problem
is further compounded if there are many shocks appearing and disappearing as the solution
proceeds in time.

These difficulties have given rise to the shock-capturing technique [10,11]. The shock-
capturing technique does not treat a shock as a moving internal boundary, and the solution is
obtained by integrating the governing equations in conservation form [12]. However, the
shock-capturing technique might smear a shock when applied to a fixed-grid finite difference
scheme. Extensions to a higher-order of accuracy do improve the shock resolution but cannot
overcome problems inherent in the use of fixed-grid.

Another approach for avoiding the smearing of a shock is to track it and make its location
coincide with a mesh point and then use a finite difference scheme capable of resolving a
stationary shock. Although a shock has to be tracked in much the same way as in the case of
shock-fitting approach, its treatment as a moving internal boundary is not required. Harten
and Hyman [13] devised a self-adjusting grid that, when used with appropriate finite difference
schemes, yields perfect shock resolution by ensuring that a shock always lies on a mesh point.
Jha [14] implemented Roe’s [15] first-order flux-difference-splitting (FDS) scheme on this
self-adjusting grid and reported improved shock resolution for one-dimensional transient free
surface flows.

In this paper, the effectiveness and usefulness of further enhancing shock resolution of a
second-order accurate scheme for open-channel flows by using an adaptive grid is investigated.
The second-order FDS scheme is developed using the Lax–Wendroff numerical flux and Roe’s
(1981) approximate Jacobian on a fixed grid as well as on the adaptive grid developed by
Harten and Hyman [13]. Roe’s [15] approximate Jacobian is made entropy-satisfying by
suitable treatment [13]. The source term, often ignored as not-so-problematic when developing
FDS schemes [6,7,14], has been identified as requiring equal attention [16]. Details for
incorporating the source term are included in this paper. Numerical examples examining
improvements in shock resolution due to the use of the self-adjusting grid, capabilities of the
model to simulate complex channel flows and the effectiveness of the technique for handling
source terms are also presented.
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2. GOVERNING EQUATIONS

The governing equations for one-dimensional transient free surface flows are

�U
�t

+
�E
�x

+S1+S2=0 (1)

where U is the vector of unknowns, E is flux vector and S1 and S2 are vectors containing
source and sink terms respectively. These vectors for a prismatic channel of arbitrary
cross-section are given as

U=
� A

uA
�

(‘2)

E=
� uA

u2A+gFh

�
(3)

S1=
� 0

−gAS0

�
(4)

S2=
� 0

−gASf

�
(5)

where A is the cross-sectional area of flow; u is the velocity; g is the acceleration due to gravity;
S0 is the bed slope and Sf is the friction slope given by the Manning’s formula; Fh is the
hydrostatic pressure force given by

Fh=
� h

0

(h−�)W(�) d� (6)

where h is the flow depth; � is an integration variable indicating distance from channel bottom;
and W(�) is the channel width at �. The flux vector E is related to vector U through its
Jacobian J as

�E
�x

=J
�U
�x

(7)

and the Jacobian is given by
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J=
� 0 1

gA/W(�)−u2 2u
n

(8)

The governing equations are hyperbolic, which implies that J has a complete set of
independent and real eigenvectors. Therefore, J can be written in diagonalized form as

J=eDme−1 (9)

where e and e−1 are the matrix and inverse matrix of eigenvectors of J given by

e=
� 1 1

u+c u−c
�

(10)

e−1=
1
2c
�− (u−c) 1

u+c −1
�

(11)

where c is celerity expressed as

c=
� gA

W(h)
(12)

and Dm is the diagonal matrix of eigenvalues of J given by

Dm=
��1 0

0 �2

�
=

�u+c 0
0 u−c

�
(13)

Roe [15] constructed an approximate Jacobian using the following average values of velocity
and celerity:

ũ=
AR

1/2uR+AL
1/2uL

AR
1/2+AL

1/2 (14)

c̃2=g
�(Fh)
�A

(15)

where the operator is defined as

�( · )= ( · )R− ( · )L (16)

and subscripts R and L refer to the left and right states. The approximate Jacobian can be used
for the conservative evaluation of �E by Equation (7). The approximate Jacobian satisfies the
following properties:
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�U= ẽ�̃ (17)

�E=J� �U= ẽD� m�̃ (18)

From Equation (17), �, the column matrix of wave strengths, is obtained as

�̃= ẽ−1�U=
��h/2+ (�(uh)− ũ�h)/2c̃

�h/2− (�(uh)− ũ�h)/2c̃
�

(19)

3. SECOND-ORDER FDS SCHEME ON FIXED GRID

The second-order accurate Lax–Wendroff scheme for one-dimensional transient free surface
flows can be written as

Ui
t+1=Ui

t−0.5�(Ei+1−Ei−1)+0.5�2(Ji−1/2(Ei+1−Ei)−Ji+1/2(Ei−Ei−1)) (20)

where i and t are space and time indices respectively; �=�t/�x, where �t is the time increment
and �x is the finite difference grid size in space (Figure 1). All variables are at time level t if
not indicated otherwise by superscripts. Equation (20) can also be written as

Ui
t+1=Ui

t−� [Fi+1/2−Fi−1/2] (21)

Figure 1. Variable grid and underlying fixed grid.
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where F, called numerical flux, is given by

Fi+1/2=
1
2

(Ei+1+Ei)−
�

2
Ji+1/2(Ei+1−Ei) (22)

Using Roe’s approximate Jacobian, Equation (22) can be written as

Fi+1/2=
1
2

(Ei+1+Ei)−
�

2
(ẽD� m

2 �̃)i+1/2 (23)

which can be mathematically manipulated to look like a first-order numerical flux with
second-order terms added to it. This allows making the scheme total variation diminishing
(TVD) by limiting the contribution of the second-order term by some flux limiter [17].
Therefore, the TVD numerical flux for Lax–Wendroff scheme can be written as

Fi+1/2=
1
2

(Ei+1+Ei)−
1
2

(ẽ�D� m��̃)i+1/2+
1
2

(� ẽ(�D� m�−�D� m
2 )�̃)i+1/2 (24)

The flux limiter � is a non-linear function of

ri+1/2= (�i+1/2−sign(�� i+1/2)/�i+1/2) (25)

There are several types of non-linear functions of r available in the literature [17]. We used
the Van Albada limiter in this study, which is expressed as

�= (r+r2)/(1+r2) (26)

The numerical scheme given by Equation (24) will be referred to as the Lax–Wendroff–
Roe–Sweby (LWRS) scheme in the rest of this paper.

4. ENTROPY-SATISFYING TREATMENT

The approximate Jacobian computed using average velocity and celerity given by Equations
(14) and (15) is conservative and consistent with the governing equations. However, it violates
the entropy inequality condition, which results in the scheme converging to a non-physical
solution in case of rarefaction waves. The problem can be remedied by replacing the modulus
of Dm in Equation (24) by a function Qz defined as [13]

Qz=
��Dm�, if �Dm���

f(Dm, �), otherwise
(27)

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 35–52



OPEN-CHANNEL FLOWS 41

The idea in the above treatment is to place an intermediate state between the left (L) and
right (R) states. Depending on the definition of such an intermediate state, several alternatives
can be devised for f(Dm, �). The following can be derived assuming continuous and linear
averages for the intermediate state respectively:

f(Dm, �)=� (28)

and

f(Dm, �)=0.5
�Dm

2

�
+�

�
(29)

� is a small positive quantity that can be either estimated by trial or computed by the
following formula [13]:

�i+1/2=max[0, �(Ui, Ui+1)−�(Ui), �(Ui+1)−�(Ui, Ui+1)] (30)

5. SOURCE TERM

Since S2 contains only friction terms and no derivative at all, it can be very well approximated
by the Manning’s formula. On the contrary, S1, although containing no derivative with respect
to flow variables, contains derivatives with respect to the independent variable x. Roe [16]
argued that, in linear systems, the source term S1 should be upwinded in the same way as the
flux term E. Applying the same idea in the present case, we can write

S1= (ẽD� m�s )/�x (31)

which yields

�̃s=
gh� �Zb

2c̃
� 1/(ũ+ c̃)

−1/(ũ− c̃)
�

(32)

where Zb is the bed elevation and the operator is given by Equation (16). To account for the
source term, Equation (18) can be modified as

�E=J� �U= ẽD� m(�̃+ �̃s) (33)

Consequently, the following terms must be added to the numerical flux (Equation (24)):

Si+1/2= −
1
2

(ẽ�D� m��̃s)i+1/2+
1
2

(ẽDm�̃s)i+1/2 (34)
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Finally, �tS2 can be added to Equation (21).

6. ADAPTIVE GRID

The LWRS scheme on a fixed grid, as described in the preceding section, can perfectly resolve
a shock if it lies at the extremities of the interval between i+1/2 and i−1/2. However, if a
shock lies in the interior of this interval, which may often be the case, the shock is bound to
be smeared. The maximum smearing would occur if a shock lies at the center of the interval
between i+1/2 and i−1/2. A solution to this problem was suggested by Harten and Hyman
[13] in the form of a variable grid that adjusts itself at each step of the computation. The
adjustment is such that the location of a shock always coincides with a grid point, thereby
resembling a stationary shock. The LWRS scheme on this self-adjusting grid yields resolution
of a shock as a perfect discontinuity.

Details of the self-adjusting grid are referred to by Harten and Hyman [13] and Jha [14].
Only relevant equations are presented in the following. The self-adjusting grid and the
underlying fixed grid are shown in Figure 1. The end-points of the variable grid are computed
as

�̃ i�1/2
t+1 =Xi�1/2+

� �
1

m= −1

(�̄ i+m�1/2
t+1 −Xi�1/2)�i+m�1/2f(�̄ i+m�1/2

t+1 ; xi, xi�1)
n	

�i�1/2

(35)

where Xi�1/2=0.5(xi+xi�1). The other terms in Equation (35) are computed as

�̄ i�1/2
t =� i�1/2

t +�t� i�1/2
t (36)

�i�1/2=
� �

2

k=1

(� i�1/2
k )2� i�1/2

k 
	
�i�1/2 (37)

�i�1/2= �
2

k=1

(� i�1/2
k )2 (38)

�i+1/2= �
1

m= −1

�i+m+1/2f(�i+m+1/2; xi, xi+1) (39)

f(�i+m+1/2; xi, xi+1)=
�1, xi� �̄i+m+1/2�xi+1

0, otherwise
(40)

The computed interval end-points are finally modified by the following tests:
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� i�1/2
t+1 =

��̃ i�1/2
t+1 , di

t+1�0.5Ri

�̃ i�1/2
t+1 �0.5Ri�i�1/2/(�i+1/2+�i−1/2), otherwise

(41)

where

di
t+1= �̃ i+1/2

t+1 − �̃ i−1/2
t+1 (42)

At each step of the computation, new interval end-points are computed and the grid is
automatically adjusted according to evolving solutions.

7. LWRS SCHEME ON A SELF-ADJUSTING GRID

The LWRS scheme on the aforementioned adaptive grid can be written as

Ui
t+1= ((��)tUi

t−�t(F� i+1/2−F� i−1/2))/(��)t+1, ��=�i+1/2−�i−1/2 (43)

where the numerical flux is expressed as

F� i+1/2=
1
2

(E� i+1+E� i)−
1
2

(ẽ�D�̂ m��̃)i+1/2+
1
2

(� ẽ(�D�̂ m�−�D�̂ m
2 )�̃)i+1/2 (44)

E� =E−�U (45)

(D�̂ m)i�1/2= (D� m)i�1/2−�i�1/2 (46)

8. NUMERICAL SIMULATIONS AND RESULTS

The examples are suitably designed to examine and demonstrate various aspects of this study.
The first three examples are especially meant to examine improved shock resolution due to an
adaptive grid. The channel conditions are idealized in these examples, which allow comparison
of computed results with analytical solutions. The fourth example compares numerical results
with experimental data. The fifth example demonstrates handling of the source term. The final
example demonstrates the models’ capability to compute flow over an almost-dry bed, wherein
the numerical results are compared with the Ritter solution.

Equation (43) yields an integral solution of the problem which may be significantly different
from the point-wise values at the finite difference nodes in the case of rarefaction waves.
Consequently, plotting of these integral values as point-wise values may indicate the existence
of several constant states, which is entirely a problem of a plotting algorithm. The problem can
be avoided to some extent by a suitable averaging procedure [13]. However, we have ignored
this aspect as it only affects the appearance of the plotted profile.
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8.1. Sudden opening of sluice gate

The first example considers the sudden opening of a sluice gate in the middle of a 20-m long
rectangular, horizontal and frictionless channel. The sluice gate is placed at mid-length of the
channel. The gate retains 10-m deep still water to its left side while the remaining half of the
channel has 0.05-m deep still water. The discontinuity in depth at the gate is specified as the
initial condition that simulates the hydraulic condition resulting from the sudden opening of
the sluice gate. Both upstream and downstream boundaries are kept closed. The computations
are done with a fixed-grid size of 0.10 m.

The computed depth and velocity profiles soon after 0.2 s are shown in Figures 2 and 3
respectively. The analytical solutions are also plotted therein. A noticeable improvement in the
shock resolution is seen as a result of using the LWRS scheme on the varying grid. The depth
and velocity computed by both fixed and varying grid versions of the LWRS scheme agree
perfectly well with the analytical solutions.

8.2. Sudden closure of sluice gate

This example considers the flow resulting from the sudden closure of a sluice gate in the
channel of the previous example. Initially the sluice gate is fully open and the channel has
0.064-m deep water flowing at 1.82 m s−1 (Froude number=2.30). At supercritical inflow

Figure 2. Depth profile 0.20 s after sudden opening of sluice gate.
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Figure 3. Velocity profile 0.20 s after sudden opening of sluice gate.

upstream, both depth and velocity are specified while no boundary condition is required at the
supercritical outflow downstream. The fixed grid size is 0.10 m. At time 0.05 s the sluice gate
is instantaneously closed. Upstream of the sluice gate, a reflected bore is formed, which travels
upstream, leaving still water behind. Downstream of the sluice gate, a negative wave is formed
whose profile stretches and recedes in the downward direction.

The computed results soon after 3.0 s are shown in Figure 4 along with the analytical
solution. The bore upstream, as well as the negative wave downstream, are very well simulated
by models on fixed as well as varying grids. The effect of the varying grid in terms of enhanced
shock resolution is less obvious in this case than in the previous example.

8.3. Bore propagation and reflection

Propagation of a bore on still water and its reflection from the closed end is simulated in this
example. The 40-m long rectangular channel is assumed to be horizontal and frictionless. The
fixed grid size is 0.20 m. The initial condition in the channel is specified as 1-m deep still water
throughout the channel. The downstream end is kept closed while at the upstream end a
constant discharge of 50 m3 s−1 is maintained from the start of computation. The resulting
bore travels downstream and eventually hits the downstream closed end. Thereafter, a reflected
bore is formed that travels upstream.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 35–52
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Figure 4. Depth profile 2.95 s after sudden closure of sluice gate.

Figure 5 shows the computed bore at 2 s and the reflected bore at 4 s. Analytical solutions
are also plotted in the figure. It is evident that the models correctly compute the bore
propagation and reflection. As expected, the use of the varying grid yields better shock
resolution in this case.

8.4. Hydraulic jump in a channel

The next problem considers a hydraulic jump in a channel. This example is taken from
experiments conducted by Gharangik [18] in a 13.9-m long and 0.45-m wide straight,
horizontal rectangular channel with Manning’s values of between 0.008 and 0.011. The
constant discharge was 0.053 m3 s−1. The upstream flow depth was 0.064 m (velocity=1.82
m s−1, Foude number=2.3) and the conjugate depth was 0.17 m (velocity=0.69 m s−1,
Froude number=0.53). The grid size for this problem is 0.05 m. At the upstream end, both
depth and velocity are specified as required for supercritical inflow. The downstream end is
provided with an overflow weir that is designed to maintain the required depth for the
formation of a hydraulic jump. The weir across the channel width has crest at 0.048 m. We
obtained good results with a Manning value=0.009.

The steady state results are compared with experimental data in Figure 6. The location of
jump at about 1.8 m agrees well with the experimental data and so does the jump height. It
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OPEN-CHANNEL FLOWS 47

Figure 5. Bore propagation and reflection in a channel.

may be noted, however, that the shallow-water equations yield sharp discontinuities and
therefore fail to correctly predict the length of the jump. There is no noticeable difference
between results by fixed and varying-grid formulations. It may also be noted that the
downstream weir is very well simulated by the models.

8.5. Reflected bore in sloping trapezoidal channel

This problem examines whether the source term is properly computed by the models. The
example is taken from Fennema and Chaudhry [19]. The 5000-m long trapezoidal channel with
a side slope of 1.5V:1.0H, longitudinal slope 0.0000785 and Manning’s n=0.013 constantly
carries a uniform flow with velocity 1.47 m s−1 and depth 5.79 m. After the start of the
computation, the flow velocity at the downstream end is reduced to zero, which leads to the
formation of a shock that travels upstream. The fixed grid size is 10 m.

The computed results are shown in Figure 7 along with the results obtained by the Euler
explicit version of the conservative Beam and Warming scheme [4]. While the problem is very
well simulated, the difference in shock resolution between the varying grid and the fixed grid
is not significant.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 35–52
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Figure 6. Computation of hydraulic jump and comparison with experimental data.

8.6. Flood-wa�e on dry bed

The propagation of a flood-wave on a dry bed is simulated in this example. The flood-wave
results from a sudden collapse of a dam in the middle of a 40-m long rectangular, horizontal
and frictionless channel. The fixed grid size is 0.20 m. The initial condition in the reservoir is
1.0-m deep still water. The LWRS scheme does not work below a tail-water depth-to-reservoir
depth ratio of 0.005 and therefore Roe’s first-order accurate scheme was used until the LWRS
scheme became applicable [7]. An absolute zero depth in the tail-water causes mathematical
problems. To avoid this, a negligible depth of 0.00001 m is assumed to exist initially below the
dam.

The results at 3+�t s are shown in Figure 8 along with the Ritter solution. It is noted that
the computed wave front lags slightly behind that of the Ritter solution. However, for most
practical purposes, the computed results can be termed as reasonably good.

9. CONCLUSIONS

The second-order accurate FDS scheme based on the Lax–Wendroff numerical flux for
simulating one-dimensional transient free surface flows is implemented on a self-adjusting grid
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Figure 7. Reflected bore in a sloping, trapezoidal channel.

for examining improvement in shock resolution. The use of Roe’s approximate Jacobian
makes the scheme conservative and consistent with the governing equations. The source term
has been treated in a way consistent with the general formulation of the FDS scheme. The
model is applied to several specially designed problems and the results are compared with
analytical solutions and with experimental data.

It is concluded that the LWRS scheme yields very good results for all the problems
considered. The shock resolution does improve as a result of using the varying grid. However,
the improvement is not found to be significant. This may be due to the fact that the shock
resolution by the LWRS scheme on a fixed-grid itself is very good. The inclusion of source
terms also complicates the matter for the adaptive grid because the adaptive grid developed by
Harten and Hyman [13] is meant for a conservative scheme and inclusion of source terms
introduces non-conservativeness. For very strong source terms, the LWRS scheme on an
adaptive grid becomes increasingly unstable. In view of these limitations in using the adaptive
grid and only marginal improvement in shock resolution, it is concluded that the use of an
adaptive grid can only be justified for a specific problem requiring particularly high shock
resolution.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 35–52



A. K. JHA, J. AKIYAMA AND M. URA50

Figure 8. Flood-wave propagation on dry bed.

APPENDIX A. NOMENCLATURE

cross-sectional area of flowA
celerityc
grid size on self-adjusting gridd

Dm diagonal matrix of eigenvalues of J
matrix of eigenvectorse
flux matrix on fixed gridE

E� flux matrix on self-adjusting grid
function of �f
hydrostatic pressure force termFh

F numerical flux on fixed grid
numerical flux on self-adjusting gridF�
acceleration due to gravityg
flow depthh
grid location in spacei
Jacobian of E with respect to UJ
wave numberk
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R minimum of two adjacent intervals on fixed grid
S0 bed slope

friction slopeSf

S1, S2 matrix of source and sink terms
index for timet

u velocity
vector for flow variablesU
speed of single discontinuity�
channel width at distance � from channel bottomW(�)
distance along channelx

Greek letters
wave strength�

wave strength equivalent for source term�s

sum of square of ��

�, �̃ interval end-points on self-adjusting grid
first guess value of interval end-points on self-adjusting grid�̄

small positive quantity	

weighted amplitude of the waves�

�t/�x�

� integration variable indicating distance from channel bottom
eigenvalues of J�

eigenvalues of J for Roe’s scheme on self-adjusting grid��
� operator, i.e. �fi+1/2= f+1− fi
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